论文标题
洋子不变的上限猜想
An upper bound conjecture for the Yokota invariant
论文作者
论文摘要
我们猜想了Yokota不变的多面体图的上限,从而扩大了$ 6J $ -Symbol的增长的先前结果。使用Barrett的傅立叶变换,我们能够在大型示例中证明这一猜想。由于这一结果,我们证明了新无限的双曲歧管系列的Turaev-Viro量猜想。
We conjecture an upper bound on the growth of the Yokota invariant of polyhedral graphs, extending a previous result on the growth of the $6j$-symbol. Using Barrett's Fourier transform we are able to prove this conjecture in a large family of examples. As a consequence of this result, we prove the Turaev-Viro Volume Conjecture for a new infinite family of hyperbolic manifolds.