论文标题
可压缩磁化湍流中磁场线的曲率:统计,磁化预测,梯度曲率,模式和自我修剪介质
Curvature of magnetic field lines in compressible magnetized turbulence: Statistics, magnetization predictions, gradient curvature, modes and self-gravitating media
论文作者
论文摘要
星际介质中的磁场线具有丰富的形态,可以以曲率和扭转等几何参数为特征。在本文中,我们探讨了可压缩磁化湍流中磁场线曲率$κ$的统计特性。我们看到,磁场线曲率遵守势力关系的平均值和标准偏差。此外,曲率概率分布函数的幂律也与Alfgenic Mach数字成正比。我们还探讨了曲率方法是否可以用于实地追踪速度梯度技术。特别是,我们观察到,速度梯度探测到$ m_a $的曲率探测曲率之间存在关系。最后,我们讨论了星际湍流中不同MHD模式如何贡献曲率,并表明MHD模式的特征向量可能由磁场线的自然Fernet-Serrat框架来表示。我们讨论了曲率技术的可能理论和观察性应用,包括对特殊长度尺度上的扩展理解,表征了磁场曲率在驱动MHD湍流中的重要性,以及如何有可能将其用于研究自我绘制系统。
Magnetic field lines in interstellar media have a rich morphology, which could be characterized by geometrical parameters such as curvature and torsion. In this paper, we explore the statistical properties of magnetic field line curvature $κ$ in compressible magnetized turbulence. We see that both the mean and standard deviation of magnetic field line curvature obey power-law relations to the magnetization. Moreover, the power-law tail of the curvature probability distribution function is also proportional to the Alfvenic Mach number. We also explore whether the curvature method could be used in the field-tracing Velocity Gradient Technique. In particular, we observe that there is a relation between the mean and standard deviation of the curvature probed by velocity gradients to $M_A$. Finally we discuss how curvature is contributed by different MHD modes in interstellar turbulence, and suggests that the eigenvectors of MHD modes could be possibly represented by the natural Fernet-Serrat frame of the magnetic field lines. We discuss possible theoretical and observational applications of the curvature technique, including the extended understanding on a special length scale that characterize the importance of magnetic field curvature in driving MHD turbulence, and how it could be potentially used to study self-gravitating system.