论文标题

关于谎言代数同种学的注释

A note on Lie algebra cohomology

论文作者

Larsen, Michael J., Lunts, Valery A.

论文摘要

鉴于有限的尺寸谎言代数$ l $让$ i $是通用封络代数$ u(l)$的增强理想。我们研究了$ l $的条件,根据该条件,当在所有$ u(l)$ - 模块的类别或$ i $ i $ -torsion $ u(l)$ u(l)$ - 模块的类别中计算时,$ ext $ groups $ ext(k,k)$(k,k)$(k,k)$是相同的。我们还证明Rees代数$ \ oplus _ {n \ geq 0} i^n $在且仅当$ l $是nilpotent时才是noetherian。给出了对肩she骨的同种学的应用。

Given a finite dimensional Lie algebra $L$ let $I$ be the augmentation ideal in the universal enveloping algebra $U(L)$. We study the conditions on $L$ under which the $Ext$-groups $Ext (k,k)$ for the trivial $L$-module $k$ are the same when computed in the category of all $U(L)$-modules or in the category of $I$-torsion $U(L)$-modules. We also prove that the Rees algebra $\oplus _{n\geq 0}I^n$ is Noetherian if and only if $L$ is nilpotent. An application to cohomology of equivariant sheaves is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源