论文标题
卫星到地面连续变量量子密钥分布的可行性
Feasibility of satellite-to-ground continuous-variable quantum key distribution
论文作者
论文摘要
在全球范围内建立安全的沟通链接是量子信息科学的主要潜在应用,但对于基础技术也极具挑战性。尽管使用卫星到地面链接并利用用于实施量子密钥分布的Singe-Photon编码的里程碑实验表明,该目标是可以实现的,但仍然有必要进一步研究与经典光学通信系统兼容的实用解决方案。在这里,我们检查了使用连续变量编码在卫星到地面下行链路配置中建立秘密键的可行性,该编码可以使用经过认证的空间环境认证并能够以高符号速率运行的标准电信组件来实现。考虑到现实的渠道模型和最先进的技术,并利用轨道细分技术来减轻传输效率的波动,我们发现低地球轨道方案的正秘密关键速率,而有限尺寸的效果可能是限制更高轨道的限制因素。我们的分析确定了重要的实验参数值的值区域,在这些参数中,秘密钥匙交换是可能的,可以用作朝着这个方向进行实验努力的指南。
Establishing secure communication links at a global scale is a major potential application of quantum information science but also extremely challenging for the underlying technology. While milestone experiments using satellite-to-ground links and exploiting singe-photon encoding for implementing quantum key distribution have shown recently that this goal is achievable, it is still necessary to further investigate practical solutions compatible with classical optical communication systems. Here we examine the feasibility of establishing secret keys in a satellite-to-ground downlink configuration using continuous-variable encoding, which can be implemented using standard telecommunication components certified for space environment and able to operate at high symbol rates. Considering a realistic channel model and state-of-the-art technology, and exploiting an orbit subdivision technique for mitigating fluctuations in the transmission efficiency, we find positive secret key rates for a low-Earth-orbit scenario, while finite-size effects can be a limiting factor for higher orbits. Our analysis determines regions of values for important experimental parameters where secret key exchange is possible and can be used as a guideline for experimental efforts in this direction.