论文标题
宇宙空间的出现和地平线熵的最大化
Emergence of cosmic space and the maximization of horizon entropy
论文作者
论文摘要
宇宙的空间膨胀可以描述为宇宙时间的进步,通过简单的方程式,$ΔV=Δt\ left(n_ {surf} -n_ n_ {bulk} \ right)$。 Sheykhi推广了Padmanabhan在对平坦宇宙的一般相对性的背景下提出的这种出现定律,该定律已被Sheykhi推广到Gauss Boonet和Lovelock Gravity,并为具有任何空间曲率的宇宙而言。我们研究了这种广义全息均衡是否有效意味着地平线熵的最大化。首先,我们通过在任何空间曲率的宇宙中获得了爱因斯坦,高斯帽子和洛夫洛克重力的地平线熵的最大化所施加的约束。然后,我们在\ cite {sheykhi}中分析了出现定律的一致性,并获得了这些约束。有趣的是,出现定律和地平线熵最大化都需要一个渐近的安慰宇宙,$ω\ geq -1 $。更具体地说,当批量$(n_ {bulk})$中的自由度等于边界表面$(n_ {surf})上的自由度时,$ univerese达到了最大的地平线熵状态。因此,即使在非平坦的宇宙中,出现定律也可以视为最大化地平线熵的趋势。我们的结果表明,无论空间曲率如何,出现定律与地平线热力学定律与地平线热力学之间的联系。
The spatial expansion of the universe can be described as the emergence of space with the progress of cosmic time, through a simple equation, $ΔV = Δt\left(N_{surf}- N_{bulk}\right)$. This law of emergence suggested by Padmanabhan in the context of general relativity for a flat universe has been generalized by Sheykhi to Gauss Bonnet and Lovelock gravity for a universe with any spacial curvature. We investigate whether this generalized holographic equipartition effectively implies the maximization of horizon entropy. First, we obtain the constraints imposed by the maximization of horizon entropy in Einstein, Gauss Bonnet and Lovelock gravities for a universe with any spacial curvature. We then analyze the consistency of the law of emergence in \cite{Sheykhi}, with these constraints obtained. Interestingly, both the law of emergence and the horizon entropy maximization demands an asymptotically de Sitter universe with $ω\geq -1$. More specifically, when the degrees of freedom in the bulk $( N_{bulk})$ becomes equal to the degrees of freedom on the boundary surface $(N_{surf}),$ the universe attains a state of maximum horizon entropy. Thus, the law of emergence can be viewed as a tendency for maximizing the horizon entropy, even in a non flat universe. Our results points at the deep connection between the law of emergence and horizon thermodynamics, beyond Einstein gravity irrespective of the spacial curvature.