论文标题
多重社交网络中的Interlayer链接预测:迭代程度惩罚算法
Interlayer link prediction in multiplex social networks: an iterative degree penalty algorithm
论文作者
论文摘要
在线社交网络(OSN)应用程序提供不同的体验;例如,在Twitter上发布简短文字并在Instagram上分享照片。多个OSN构成一个多路复用网络。出于隐私保护和使用目的,不同OSN中属于同一用户的帐户可能具有不同的用户名,照片和介绍。 Interlayer Link网络中的链接链接预测旨在确定不同OSN中的帐户是否属于同一个人,这可以帮助完成包括网络犯罪行为建模和客户兴趣分析在内的任务。许多现实世界中的OSN表现出无标度的分布。因此,具有不同程度的邻居可能对不同OSN的节点匹配程度产生不同的影响。我们为多重网络中的层链接链路预测开发了迭代度惩罚(IDP)算法。首先,我们提出了一个学位惩罚原则,该原则将更大的匹配邻居分配给较少的连接。其次,我们应用了节点邻接矩阵乘法,以有效地获得所有无与伦比的节点对的匹配度。此后,我们使用批准的最大值方法从匹配度矩阵中获得层间链接预测结果。最后,将预测结果插入到先验的层间节点对集中,上述过程进行迭代执行,直到一层中的所有无与伦比的节点均匹配或无与伦比的节点对的所有匹配程度等于0。实验表明,当我们的高级IDP算法显着超过网络结构的平均值,并且在乘数均超过了乘数乘,并且node是多重的。
Online social network (OSN) applications provide different experiences; for example, posting a short text on Twitter and sharing photographs on Instagram. Multiple OSNs constitute a multiplex network. For privacy protection and usage purposes, accounts belonging to the same user in different OSNs may have different usernames, photographs, and introductions. Interlayer link prediction in multiplex network aims at identifying whether the accounts in different OSNs belong to the same person, which can aid in tasks including cybercriminal behavior modeling and customer interest analysis. Many real-world OSNs exhibit a scale-free degree distribution; thus, neighbors with different degrees may exert different influences on the node matching degrees across different OSNs. We developed an iterative degree penalty (IDP) algorithm for interlayer link prediction in the multiplex network. First, we proposed a degree penalty principle that assigns a greater weight to a common matched neighbor with fewer connections. Second, we applied node adjacency matrix multiplication for efficiently obtaining the matching degree of all unmatched node pairs. Thereafter, we used the approved maximum value method to obtain the interlayer link prediction results from the matching degree matrix. Finally, the prediction results were inserted into the priori interlayer node pair set and the above processes were performed iteratively until all unmatched nodes in one layer were matched or all matching degrees of the unmatched node pairs were equal to 0. Experiments demonstrated that our advanced IDP algorithm significantly outperforms current network structure-based methods when the multiplex network average degree and node overlapping rate are low.