论文标题

在高雷诺数字时气泡引起的湍流的直接数值模拟

Direct Numerical Simulation of bubble-induced turbulence at high Reynolds numbers

论文作者

Innocenti, Alessio, Jaccod, Alice, Popinet, Stéphane, Chibbaro, Sergio

论文摘要

我们报告了对湍流流动的调查。大小的气泡大于耗散量表,不能将其视为点夹杂物,并且在运动时会在载体流体中产生重要的流体动力场。此外,当气泡的体积分数足够大时,气泡运动可能会由于流体动力相互作用而引起集体搅动,这些相互作用显示出一些湍流的特征。我们通过数值来解决这一复杂的现象,用富量(VOF)方法执行直接数值模拟(DNS)。在工作的第一部分中,我们同时执行2D和3D测试,以确定适当的数值和物理参数。 然后,我们对3D气泡柱进行了高度分辨的模拟,其配置和物理参数类似于实验室实验中使用的参数。这是尝试进行这种配置的最大模拟,仅由于自适应网格的细化,才有可能。将结果与实验和先前的粗线数值模拟进行了比较。特别是,尽管在当前的配置中采样了更极端的事件,但液体速度波动的单点概率密度函数(PDF)与实验符合实验的定量良好一致。液体动能的光谱显示出明显的$ k^{ - 3} $缩放。 能量传递和众所周知的级联可能存在的机制通过物理空间中的局部规模分析揭示了。与以前的模拟的比较表明,从统计学的角度来看,未充分解决的模拟在多大程度上可能还能给出正确的结果。

We report on a investigation of turbulent bubbly flows. Bubbles of a size larger than the dissipative scale, cannot be treated as point-wise inclusions, and generate important hydrodynamic fields in the carrier fluid when in motion. Furthermore, when the volume fraction of bubbles is large enough, the bubble motion may induce a collective agitation due to hydrodynamic interactions which display some turbulent-like features. We tackle this complex phenomenon numerically, performing direct numerical simulations (DNS) with a Volume-of-fluid (VOF) method. In the first part of the work, we perform both 2D and 3D tests in order to determine appropriate numerical and physical parameters. We then carry out a highly-resolved simulation of a 3D bubble column, with a configuration and physical parameters similar to those used in laboratory experiments. This is the largest simulation attempted for such a configuration and is possible only thanks to adaptive grid refinement. Results are compared both with experiments and previous coarse-mesh numerical simulations. In particular, the one-point Probability Density Function (PDF) of the liquid velocity fluctuations is in good quantitative agreement with experiments, notably in the vertical direction, although more extreme events are sampled in the present configuration. The spectra of the liquid kinetic energy show a clear $k^{-3}$ scaling. The mechanisms underlying the energy transfer and notably the possible presence of a cascade are unveiled by a local scale-by-scale analysis in the physical space. The comparison with previous simulations indicate to what extent simulations not fully resolved may yet give correct results, from a statistical point of view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源