论文标题

多层感知器的非线性磁场校准方法,用于基于滤波器的磁力仪

A Non-Linear Magnetic Field Calibration Method for Filter-Based Magnetographs by Multilayer Perceptron

论文作者

Guo, JingJing, Bai, XianYong, Deng, YuanYong, Liu, Hui, Lin, JiaBen, Su, JiangTao, Yang, Xiao, Ji, KaiFan

论文摘要

对于基于过滤器的磁力仪,通常采用弱场假设下的线性校准方法。这导致具有强磁场的区域的磁饱和效应。本文探讨了一种使用多层perceptron网络克服上述缺点的新方法,我们将基于一个带有一个输入层,五个隐藏层和一个输出层的背部传播算法称为magmlp。我们使用来自\ textIt {SpectroPolariMeter}(SP)的数据\ textit {hinode}来模拟模型训练的单波长观测值,并考虑了多普勒速度字段和填充因子的影响。训练结果表明,横向场的线性拟合系数(LFC)达到0.91以上,纵向场的线性拟合系数(LFC)高于0.98。模型的概括是好的,因为对测试子集的相应LFC高于0.9。与线性校准方法相比,MAGMLP在处理磁饱和效果方面更有效。分析活性区域时,线性校准的结果表现出在Umbra区域的明显磁饱和效应。相应的系统误差在大多数区域达到大于1000 g的值,甚至在某些像素时甚至超过2000 g。但是,在这些位置的MAGMLP结果非常接近反转结果,并且系统的错误基本上在300 g之内。此外,我们发现倾斜角度图像上有许多“明亮的斑点”和“暗点”,来自\ textit {hinode}/sp的反转结果{hinode}/sp的值及0度和0度的结果,而不是良好的结果。 Magmlp很好地处理了这些要点。

For filter-based magnetographs, the linear calibration method under the weak-field assumption is usually adopted; this leads to magnetic saturation effect in the regions with strong magnetic field. This article explores a new method to overcome the above disadvantage using a multilayer perceptron network, which we call MagMLP, based on a back-propagation algorithm with one input layer, five hidden layers, and one output layer. We use the data from the \textit{Spectropolarimeter} (SP) on board \textit{Hinode} to simulate single-wavelength observations for the model training, and take into account the influence of the Doppler velocity field and the filling factor. The training results show that the linear fitting coefficient (LFC) of the transverse field reaches above 0.91, and that of the longitudinal field is above 0.98. The generalization of the models is good because the corresponding LFCs are above 0.9 for the test subsets. Compared with the linear calibration method, the MagMLP is much more effective on dealing with the magnetic saturation effect. Analyzing an active region, the results of the linear calibration present an evident magnetic saturation effect in the umbra regions; the corresponding systematic error reaches values greater than 1000 G in most areas, or even exceeds 2000 G at some pixels. However, the results of MagMLP at these locations are very close to the inversion results, and the systematic errors are basically within 300 G. In addition, we find that there are many "bright spots" and "dark spots" on the inclination angle images from the inversion results of \textit{Hinode}/SP with values of 180 and 0 degrees, respectively, where the inversion is not reliable and does not produce a good result; the MagMLP handles these points well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源