论文标题

在人群健康研究中基于代理的建模

Situating Agent-Based Modelling in Population Health Research

论文作者

Silverman, Eric, Gostoli, Umberto, Picascia, Stefano, Almagor, Jonatan, McCann, Mark, Shaw, Richard, Angione, Claudio

论文摘要

当今最麻烦的人口健康挑战通常是由社会和环境决定因素驱动的,这种决定因素很难使用传统的流行病学方法进行建模。我们同意那些主张在承担这些挑战时更广泛采用基于代理的建模(ABM)的人。但是,尽管ABM偶尔在人口健康中使用,但我们认为,要使ABM在该领域中最有效,它应该用作传统流行病学工具包通常无法访问的问题的一种手段。为了清楚地说明ABM对人群健康研究的实用性,并清除对该方法的概念基础的持续误解,我们提供了复杂系统理论的核心概念的详细介绍,并总结了为什么模拟对于复杂系统的研究至关重要。然后,我们检查ABM中的最新现状以进行人口健康,并建议它们非常适合研究人口健康中的“邪恶”问题,并可能为这些领域的理论和干预发展做出重大贡献。

Today's most troublesome population health challenges are often driven by social and environmental determinants, which are difficult to model using traditional epidemiological methods. We agree with those who have argued for the wider adoption of agent-based modelling (ABM) in taking on these challenges. However, while ABM has been used occasionally in population health, we argue that for ABM to be most effective in the field it should be used as a means for answering questions normally inaccessible to the traditional epidemiological toolkit. In an effort to clearly illustrate the utility of ABM for population health research, and to clear up persistent misunderstandings regarding the method's conceptual underpinnings, we offer a detailed presentation of the core concepts of complex systems theory, and summarise why simulations are essential to the study of complex systems. We then examine the current state of the art in ABM for population health, and propose they are well-suited for the study of the `wicked' problems in population health, and could make significant contributions to theory and intervention development in these areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源