论文标题

泊松内核避免在图形卷积网络中自动化

Poisson Kernel Avoiding Self-Smoothing in Graph Convolutional Networks

论文作者

Yang, Ziqing, Han, Shoudong, Zhao, Jun

论文摘要

现在,图形卷积网络(GCN)是处理非欧国人数据的有效工具,例如社交行为分析中的社交网络,化学领域的分子结构分析以及基于骨架的动作识别。 Graph卷积内核是GCN提取节点特征的最重要因素之一,并且在理论上和实验上,它的一些改进都达到了有希望的性能。但是,关于不同的数据类型和图形结构如何影响这些内核的性能的研究有限。大多数现有方法都使用自适应卷积内核来处理给定的图形结构,但仍未揭示内部原因。在本文中,我们从对光谱图的理论分析开始,研究了现有图形卷积内核的特性。在考虑一些具有特定参数的设计数据集的同时,我们揭示了卷积内核的自动平滑现象。之后,我们提出了泊松内核,可以避免在不训练任何自适应核的情况下进行自动锻炼。实验结果表明,我们的泊松内核不仅在最先进方法效果良好的基准数据集上运行良好,而且在合成数据集中显然优于它们。

Graph convolutional network (GCN) is now an effective tool to deal with non-Euclidean data, such as social networks in social behavior analysis, molecular structure analysis in the field of chemistry, and skeleton-based action recognition. Graph convolutional kernel is one of the most significant factors in GCN to extract nodes' feature, and some improvements of it have reached promising performance theoretically and experimentally. However, there is limited research about how exactly different data types and graph structures influence the performance of these kernels. Most existing methods used an adaptive convolutional kernel to deal with a given graph structure, which still not reveals the internal reasons. In this paper, we started from theoretical analysis of the spectral graph and studied the properties of existing graph convolutional kernels. While taking some designed datasets with specific parameters into consideration, we revealed the self-smoothing phenomenon of convolutional kernels. After that, we proposed the Poisson kernel that can avoid self-smoothing without training any adaptive kernel. Experimental results demonstrate that our Poisson kernel not only works well on the benchmark dataset where state-of-the-art methods work fine, but also is evidently superior to them in synthetic datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源