论文标题
有效的量子动力学理论,用于具有碰撞效应的费米子自旋运输
Effective quantum kinetic theory for spin transport of fermions with collsional effects
论文作者
论文摘要
我们系统地得出了轴向动力学理论的碰撞项,这是一种量子动力学理论,描述了矢量/轴向电荷的耦合动力学以及由横穿介质的巨大旋转1/2速度携带的自旋转运。我们采用了Wigner功能方法,并提出了一个一致的功率计数方案,其中轴向电荷分布函数(用于大规模颗粒的非保存数量)被视为$ \ hbar $扩展中的一阶数量,而矢量电荷分布函数则函数Zeroth-sorter-rorth-rorder-rorder-rorder-sord-order dortity。这种特定的电源计数方案使我们能够在碰撞项中组织减少的$ \ hbar $扩展,并正式以相同顺序识别自旋 - 扩散效果和自旋偏振效果。我们确认所获得的碰撞轴向动力学理论可以在无质量极限中平稳地减少到手性动力学理论,作为一致性检查。在没有电磁场的情况下,我们进一步介绍了分别用于跟踪重量和光费米的动态自旋极化的简化轴向动力学方程。作为在高温下对弱耦合夸克 - 格鲁隆等离子体的应用,我们计算了前lagog近似值内大量夸克的自旋扩散项。一阶项的形式表达为评估量子染色体动力学中自旋极化效应的途径提供了途径。
We systematically derive the collision term for the axial kinetic theory, a quantum kinetic theory delineating the coupled dynamics of the vector/axial charges and spin transport carried by the massive spin-1/2 fermions traversing a medium. We employ the Wigner-function approach and propose a consistent power-counting scheme where the axial-charge distribution function, a non-conserved quantity for massive particles, is accounted as the first-order quantity in the $ \hbar $ expansion, while the vector-charge distribution function the zeroth-order quantity. This specific power-counting scheme allows us to organize a reduced $ \hbar$ expansion for the collision term and to formally identity the spin-diffusion effect and the spin-polarization effect at the same order. We confirm that the obtained collisional axial kinetic theory smoothly reduces to the chiral kinetic theory in the massless limit, serving as a consistency check. In the absence of electromagnetic fields, we further present the simplified axial kinetic equations suitable for tracking dynamical spin polarization of heavy and light fermions, respectively. As an application to the weakly coupled quark-gluon plasma at high temperature, we compute the spin-diffusion term for massive quarks within the leading-log approximation. The formal expression for the first-order terms provides a path toward evaluation of the spin polarization effect in quantum chromodynamics.