论文标题

AG中的Cameron-Liebler Line类(3,Q)

Cameron-Liebler line classes in AG(3,q)

论文作者

D'haeseleer, Jozefien, Mannaert, Jonathan, Storme, Leo, Svob, Andrea

论文摘要

PG中对Cameron-Liebler Line类的研究($ 3,Q $)是由对PG的特定相关子组进行分类($ 3,Q $)的。最近,在新设置中考虑了这些线路类。从这个角度来看,我们将将Cameron-Liebler Line类的概念推广到AG($ 3,Q $)。在本文中,我们使用恒定的交点属性来定义Cameron-Liebler Line类,用于线路差。关于此概括的有趣事实是,这些行类别与PG中的Cameron-Liebler Line类具有链接($ 3,Q $)。在给出此链接之后,我们还将提供一些等效的方法来考虑AG中的Cameron-Liebler Line类($ 3,Q $),一些分类结果以及基于[3]和[6]中的示例的示例。

The study of Cameron-Liebler line classes in PG($3,q$) arose from classifying specific collineation subgroups of PG($3,q$). Recently, these line classes were considered in new settings. In this point of view, we will generalize the concept of Cameron-Liebler line classes to AG($3,q$). In this article we define Cameron-Liebler line classes using the constant intersection property towards line spreads. The interesting fact about this generalization is the link these line classes have with Cameron-Liebler line classes in PG($3,q$). Next to giving this link, we will also give some equivalent ways to consider Cameron-Liebler line classes in AG($3,q$), some classification results and an example based on the example found in [3] and [6].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源