论文标题
非交通图的呼出者
The Haemers bound of noncommutative graphs
论文作者
论文摘要
我们继续研究香农的零误差能力问题的量子通道版本。我们概括了绑定到非交通图(从量子通道获得的)的著名呼血者。我们证明了这种结合的基本属性,例如张量产品下的直接总和和亚义务下的添加性。 Haemers绑定了上界非交通图的香农能力,我们表明它可以胜过其他已知的上限,包括LovászTheta函数的非交换性类似物(Duan-Severini-Winter,IEEETrans。Inform。Trans。Trans。4013和Boreland-Todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov-todorov,2019年)。
We continue the study of the quantum channel version of Shannon's zero-error capacity problem. We generalize the celebrated Haemers bound to noncommutative graphs (obtained from quantum channels). We prove basic properties of this bound, such as additivity under the direct sum and submultiplicativity under the tensor product. The Haemers bound upper bounds the Shannon capacity of noncommutative graphs, and we show that it can outperform other known upper bounds, including noncommutative analogues of the Lovász theta function (Duan-Severini-Winter, IEEE Trans. Inform. Theory, 2013 and Boreland-Todorov-Winter, arXiv, 2019).