论文标题
对称的逆学习
Inverse Learning of Symmetries
论文作者
论文摘要
对称转化会引起不断使用深层变量模型的不断变化。在许多复杂的域(例如化学空间)中,可以观察到不变,但是相应的对称转换无法分析。我们建议使用由两个潜在子空间组成的模型来学习对称转换,其中第一个子空间捕获目标和第二个子空间,其余的不变信息。我们的方法基于深度信息瓶颈,并结合连续的相互信息常规器。与以前的方法不同,我们专注于最大程度地减少连续域中互信息的挑战性任务。为此,我们将基于相关矩阵的相互信息与双线变量转化相结合。广泛的实验表明,我们的模型优于人工和分子数据集的最先进方法。
Symmetry transformations induce invariances which are frequently described with deep latent variable models. In many complex domains, such as the chemical space, invariances can be observed, yet the corresponding symmetry transformation cannot be formulated analytically. We propose to learn the symmetry transformation with a model consisting of two latent subspaces, where the first subspace captures the target and the second subspace the remaining invariant information. Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser. Unlike previous methods, we focus on the challenging task of minimising mutual information in continuous domains. To this end, we base the calculation of mutual information on correlation matrices in combination with a bijective variable transformation. Extensive experiments demonstrate that our model outperforms state-of-the-art methods on artificial and molecular datasets.