论文标题
Gevrey估计具有可变系数的某些时刻部分微分方程的正式解决方案
Gevrey estimates of formal solutions for certain moment partial differential equations with variable coefficients
论文作者
论文摘要
本文的目的是研究具有可变系数的某些广义线性偏微分方程的形式解决方案的Gevrey性质。特别是,我们将矩偏微分方程的概念扩展到包括与内核函数无连接的差分运算符。使用Nagumo规范的修改版本和牛顿多边形的性能,我们计算了Gevrey估算的这种广义偏微分方程的形式解决方案。
The goal of this paper is to investigate Gevrey properties of formal solutions of certain generalized linear partial differential equations with variable coefficients. In particular, we extend the notion of moment partial differential equations to include differential operators that are not connected with kernel functions. Using the modified version of Nagumo norms and the properties of the Newton polygon we compute the Gevrey estimate for formal solutions of such generalized partial differential equations.