论文标题
群片类似于组样
Slices of groupoids are group-like
论文作者
论文摘要
给定一个类别,可以构建它的切片。也就是说,人们建立了一个新类别,其对象是固定的代码剂和形态的某些交换三角形的类别的形态。如果该类别是类固醇,以使每个形态都是可逆的,则其切片是(连接)的类固醇。我们提供了许多构造,这些结构表明,类固醇切片的属性比它们来自组的属性更接近组的属性。这些包括内核和固定空间的自然概念。
Given a category, one may construct slices of it. That is, one builds a new category whose objects are the morphisms from the category with a fixed codomain and morphisms certain commutative triangles. If the category is a groupoid, so that every morphism is invertible, then its slices are (connected) groupoids. We give a number of constructions that show how slices of groupoids have properties even closer to those of groups than the groupoids they come from. These include natural notions of kernels and coset spaces.