论文标题
深度参考音图映射图像质量评估
Deep No-reference Tone Mapped Image Quality Assessment
论文作者
论文摘要
在传统显示上渲染高动态范围(HDR)图像的过程称为音调映射。但是,音调映射会在最终图像中引入失真,这可能会导致视觉不满。为了量化这些扭曲,我们为这些音调映射的图像引入了一种新型的无参考质量评估技术。该技术由两个阶段组成。在第一阶段,我们采用卷积神经网络(CNN)来从音调映射图像中通过用地面真相畸变图训练图像来生成质量的意识地图(也称为失真图)。在第二阶段,我们使用不对称的普通高斯分布(AGGD)对归一化图像和失真图进行建模。然后使用AGGD模型的参数使用支持向量回归(SVR)来估计质量得分。我们表明,所提出的技术相对于最先进的技术提供了竞争性能。这项工作的新颖性在于它可以将各种扭曲视为质量图(失真地图)的能力,尤其是在无参考环境中,并使用这些地图作为特征来估计音调图像图像的质量评分。
The process of rendering high dynamic range (HDR) images to be viewed on conventional displays is called tone mapping. However, tone mapping introduces distortions in the final image which may lead to visual displeasure. To quantify these distortions, we introduce a novel no-reference quality assessment technique for these tone mapped images. This technique is composed of two stages. In the first stage, we employ a convolutional neural network (CNN) to generate quality aware maps (also known as distortion maps) from tone mapped images by training it with the ground truth distortion maps. In the second stage, we model the normalized image and distortion maps using an Asymmetric Generalized Gaussian Distribution (AGGD). The parameters of the AGGD model are then used to estimate the quality score using support vector regression (SVR). We show that the proposed technique delivers competitive performance relative to the state-of-the-art techniques. The novelty of this work is its ability to visualize various distortions as quality maps (distortion maps), especially in the no-reference setting, and to use these maps as features to estimate the quality score of tone mapped images.