论文标题

无限多个变量中多项式环上的Spe平机模块

Sp-equivariant modules over polynomial rings in infinitely many variables

论文作者

Sam, Steven V, Snowden, Andrew

论文摘要

我们研究了无限可变多项式环上的SP均衡模块的类别,其中SP表示无限的互合式组。我们建立了有关此类别的许多结果:例如,我们表明每个有限生成的模块M均拟合到一个精确的三角形$ t \到m \ to f \ to $ to $的情况下,其中t是扭转模块的有限长度复合物,F是“ free”模块的有限长度复合物;我们确定Grothendieck组;我们(部分)确定了注射模块的结构。我们应用这些结果表明,扭曲的交换代数$ {\ rm sym}({\ bf c}^{\ iftty} \ oplus \ oplus \ bigWedge^2 {\ bf c}^{\ bf c}^{\ infty})$ {\ rm sym}^2 {\ bf c}^{\ infty})$是noetherian,这是迄今为止最强的结果。我们还表明,免费的2步nilpotent扭曲的谎言代数和谎言superalgebra是Noetherian的。

We study the category of Sp-equivariant modules over the infinite variable polynomial ring, where Sp denotes the infinite symplectic group. We establish a number of results about this category: for instance, we show that every finitely generated module M fits into an exact triangle $T \to M \to F \to$ where T is a finite length complex of torsion modules and F is a finite length complex of "free" modules; we determine the Grothendieck group; and we (partially) determine the structure of injective modules. We apply these results to show that the twisted commutative algebras ${\rm Sym}({\bf C}^{\infty} \oplus \bigwedge^2{\bf C}^{\infty})$ and ${\rm Sym}({\bf C}^{\infty} \oplus {\rm Sym}^2{\bf C}^{\infty})$ are noetherian, which are the strongest results to date of this kind. We also show that the free 2-step nilpotent twisted Lie algebra and Lie superalgebra are noetherian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源