论文标题

在本地设置中保存隐私的图像分类

Privacy-Preserving Image Classification in the Local Setting

论文作者

Wang, Sen, Chang, J. Morris

论文摘要

图像数据是由个人和商业供应商在日常生活中大量生产的,并且在广告,医疗和交通分析等各个领域都使用了图像数据。最近,图像数据在社会公用事业中似乎也非常重要,例如应急响应。但是,隐私问题成为阻止图像数据进一步探索的最大障碍,因为该图像可以揭示敏感信息,例如个人身份和位置。最近开发的本地差异隐私(LDP)为我们带来了一个有前途的解决方案,该解决方案使数据所有者可以随机扰动其输入,以在发布之前提供数据的合理可否认性。在本文中,我们考虑了一个两党图像分类问题,其中数据所有者持有图像,而不值得信赖的数据用户希望将机器学习模型与这些图像作为输入拟合。为了保护图像隐私,我们建议在向数据用户揭示之前在本地扰动图像表示。随后,我们分析了扰动如何满足ε-LDP并影响基于计数和基于距离的机器学习算法的数据实用程序,并提出了一个有监督的图像提取器DCACONV,该图像提取器DCACONV产生具有可扩展域大小的图像表示。我们的实验表明,DCACONV可以维持高数据实用程序,同时保留有关多个图像基准数据集的隐私。

Image data has been greatly produced by individuals and commercial vendors in the daily life, and it has been used across various domains, like advertising, medical and traffic analysis. Recently, image data also appears to be greatly important in social utility, like emergency response. However, the privacy concern becomes the biggest obstacle that prevents further exploration of image data, due to that the image could reveal sensitive information, like the personal identity and locations. The recent developed Local Differential Privacy (LDP) brings us a promising solution, which allows the data owners to randomly perturb their input to provide the plausible deniability of the data before releasing. In this paper, we consider a two-party image classification problem, in which data owners hold the image and the untrustworthy data user would like to fit a machine learning model with these images as input. To protect the image privacy, we propose to locally perturb the image representation before revealing to the data user. Subsequently, we analyze how the perturbation satisfies ε-LDP and affect the data utility regarding count-based and distance-based machine learning algorithm, and propose a supervised image feature extractor, DCAConv, which produces an image representation with scalable domain size. Our experiments show that DCAConv could maintain a high data utility while preserving the privacy regarding multiple image benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源