论文标题

复杂的捕食者捕食生态系统的演变,大规模多代理深钢筋学习

Evolution of a Complex Predator-Prey Ecosystem on Large-scale Multi-Agent Deep Reinforcement Learning

论文作者

Yamada, Jun, Shawe-Taylor, John, Fountas, Zafeirios

论文摘要

人口动态的模拟是计算生物学中的一个中心研究主题,有助于理解捕食者与猎物之间的相互作用。但是,该主题的常规数学工具无法解决此类系统的几个重要属性,例如单个代理人所展示的智能和适应性行为。这种不切实际的环境通常不足以模拟现实世界中发现的种群动态的性质。在这项工作中,我们利用多代理深入的强化学习,并提出了一个新的大规模捕食者生态系统模型。使用我们提出的环境的不同变体,我们表明多代理模拟可以表现出关键的现实世界动力学属性。为了获得这种行为,我们首先定义了一种交配机制,以便现有的代理再现受环境条件约束的新个体。此外,我们结合了一种实时进化算法,并表明增强学习可以增强代理人物理特性的演变,例如速度,攻击和针对攻击的弹性。

Simulation of population dynamics is a central research theme in computational biology, which contributes to understanding the interactions between predators and preys. Conventional mathematical tools of this theme, however, are incapable of accounting for several important attributes of such systems, such as the intelligent and adaptive behavior exhibited by individual agents. This unrealistic setting is often insufficient to simulate properties of population dynamics found in the real-world. In this work, we leverage multi-agent deep reinforcement learning, and we propose a new model of large-scale predator-prey ecosystems. Using different variants of our proposed environment, we show that multi-agent simulations can exhibit key real-world dynamical properties. To obtain this behavior, we firstly define a mating mechanism such that existing agents reproduce new individuals bound by the conditions of the environment. Furthermore, we incorporate a real-time evolutionary algorithm and show that reinforcement learning enhances the evolution of the agents' physical properties such as speed, attack and resilience against attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源