论文标题
面部幻觉和完成触摸
Face Hallucination with Finishing Touches
论文作者
论文摘要
从低分辨率(LR)非额外面部图像获得高质量的额叶图像对于许多面部分析应用主要很重要。但是,主流要么着重于超解决近额外的LR面,要么将非额外高分辨率(HR)面向额叶。对于日常生活不受约束的面部图像,希望无缝执行这两个任务。在本文中,我们介绍了一种新颖的生动面部幻觉生成的对抗网络(Vividgan),用于同时超级分辨和塑造微小的非额外面部图像。 Vividgan由粗级和细水平的面部幻觉网络(FHNET)和两个歧视器组成,即粗-D和Fine-D。粗级FHNET会产生额叶粗糙的人力资源面部,然后精细的FHNET使用面部成分外观,即,即细粒的面部成分,以获得具有正宗细节的额叶HR脸部图像。在高级FHNET中,我们还设计了一个面部组件感知的模块,该模块采用面部几何指南作为线索,以准确对齐并合并额叶粗糙的HR面部和先前的信息。同时,两级歧视者旨在捕获面部图像的全球轮廓以及详细的面部特征。粗糙-D强制执行粗幻觉的面部直立和完整,而细小的D则集中在精细的幻觉上,以获取更清晰的细节。广泛的实验表明,与其他最先进的方法相比,我们的Vividgan实现了光真实的额叶面孔,即在下游任务(即面部识别和表达分类)中达到卓越的性能。
Obtaining a high-quality frontal face image from a low-resolution (LR) non-frontal face image is primarily important for many facial analysis applications. However, mainstreams either focus on super-resolving near-frontal LR faces or frontalizing non-frontal high-resolution (HR) faces. It is desirable to perform both tasks seamlessly for daily-life unconstrained face images. In this paper, we present a novel Vivid Face Hallucination Generative Adversarial Network (VividGAN) for simultaneously super-resolving and frontalizing tiny non-frontal face images. VividGAN consists of coarse-level and fine-level Face Hallucination Networks (FHnet) and two discriminators, i.e., Coarse-D and Fine-D. The coarse-level FHnet generates a frontal coarse HR face and then the fine-level FHnet makes use of the facial component appearance prior, i.e., fine-grained facial components, to attain a frontal HR face image with authentic details. In the fine-level FHnet, we also design a facial component-aware module that adopts the facial geometry guidance as clues to accurately align and merge the frontal coarse HR face and prior information. Meanwhile, two-level discriminators are designed to capture both the global outline of a face image as well as detailed facial characteristics. The Coarse-D enforces the coarsely hallucinated faces to be upright and complete while the Fine-D focuses on the fine hallucinated ones for sharper details. Extensive experiments demonstrate that our VividGAN achieves photo-realistic frontal HR faces, reaching superior performance in downstream tasks, i.e., face recognition and expression classification, compared with other state-of-the-art methods.