论文标题
HARTMAN的潜力最少,矩阵元素的概述和广义复发关系
Hartmann potential with a minimal length and generalized recurrence relations for matrix elements
论文作者
论文摘要
在这项工作中,我们研究了以普遍的不确定性原理在Hartmann潜力存在下的Schrödinger方程。我们在变形$β$的参数中,在一阶的一阶中均匀地获得了哈密顿量的矩阵元素,并表明某些退化状态已被删除。我们为对角矩阵元素的溶液提供了分析表达式。最后,我们为角平均值得出了广义复发公式。
In this work we study the Schrödinger equation in the presence of the Hartmann potential with a generalized uncertainty principle. We pertubatively obtain the matrix elements of the hamiltonian at first order in the parameter of deformation $β$ and show that some degenerate states are removed. We give analytic expressions for the solutions of the diagonal matrix elements. Finally, we derive a generalized recurrence formula for the angular average values.