论文标题

可证明的物理构成的不连续的Galerkin方法用于多维相对论MHD方程

Provably Physical-Constraint-Preserving Discontinuous Galerkin Methods for Multidimensional Relativistic MHD Equations

论文作者

Wu, Kailiang, Shu, Chi-Wang

论文摘要

我们提出并分析了一类强大的,高阶的准确性不连续的盖尔金(DG)方案,用于一般网格上的多维相对论磁性水力学(RMHD)。这些方案的一个独特特征是它们的物理构成可呈现(PCP)特性,即,事实证明,它们可以保留对流体速度的跨膜约束以及密度,压力和特定内部能量的阳性。为RMHD开发PCP高阶方案是非常可取的,但仍然是一项具有挑战性的任务,尤其是在多维情况下,由于约束中固有的强非线性以及无磁发散条件的效果。受到PDE级别的一些关键观察的启发,我们通过使用最近提出的同一可对称RMHD方程的局部无差异DG方案来构建可证明的PCP方案,作为基础方案,这是一种有限的技术,以实施DG解决方案的PCP属性,以实现DG解决方案的PCP属性,以实现DG Solutions的PCP属性,以实现稳定稳定性的方法,并进行时间ivativesivative。我们通过使用新型的“准线性化”方法来处理PCP特性,以处理高度非线性的物理约束,技术分裂以抵消发散误差的影响以及复杂的估计值,以分析可对称性源术语在可对称的RMHD系统中附加源项的有益效果。提供了几个二维数值示例,以确认PCP特性并证明所提出的PCP方案的准确性,有效性和鲁棒性。

We propose and analyze a class of robust, uniformly high-order accurate discontinuous Galerkin (DG) schemes for multidimensional relativistic magnetohydrodynamics (RMHD) on general meshes. A distinct feature of the schemes is their physical-constraint-preserving (PCP) property, i.e., they are proven to preserve the subluminal constraint on the fluid velocity and the positivity of density, pressure, and specific internal energy. Developing PCP high-order schemes for RMHD is highly desirable but remains a challenging task, especially in the multidimensional cases, due to the inherent strong nonlinearity in the constraints and the effect of the magnetic divergence-free condition. Inspired by some crucial observations at the PDE level, we construct the provably PCP schemes by using the locally divergence-free DG schemes of the recently proposed symmetrizable RMHD equations as the base schemes, a limiting technique to enforce the PCP property of the DG solutions, and the strong-stability-preserving methods for time discretization. We rigorously prove the PCP property by using a novel "quasi-linearization" approach to handle the highly nonlinear physical constraints, technical splitting to offset the influence of divergence error, and sophisticated estimates to analyze the beneficial effect of the additional source term in the symmetrizable RMHD system. Several two-dimensional numerical examples are provided to confirm the PCP property and to demonstrate the accuracy, effectiveness and robustness of the proposed PCP schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源