论文标题

使用连续段相似性的二进制网络协议的消息类型标识

Message Type Identification of Binary Network Protocols using Continuous Segment Similarity

论文作者

Kleber, Stephan, van der Heijden, Rens Wouter, Kargl, Frank

论文摘要

协议基于流量轨迹的逆向工程通过分析可观察到的网络消息来渗透未知网络协议的行为。为了正确扣除消息语义或行为分析,准确的消息类型标识是必不可少的第一步。但是,识别消息类型对于二进制协议特别困难,其结构特征隐藏在密集包装的数据表示中。我们利用二进制协议的内在结构特征,并提出了一种歧视消息类型的准确方法。 我们的方法通过比较矢量元素对应于消息中的字段而不是离散字节值的特征向量来使用具有连续值范围的相似度度量。这可以更好地识别结构模式,当仅考虑确切的值匹配时,它们仍然隐藏了。我们将Hirschberg对准与DBSCAN作为群集算法相结合,以产生一种新的推理机制。通过应用新颖的自动配置方案,我们不需要手动配置参数来分析未知协议,这是早期方法所要求的。 我们评估的结果表明,我们的方法在消息类型识别结果质量以及与以前的方法相比的执行绩效具有相当大的优势。

Protocol reverse engineering based on traffic traces infers the behavior of unknown network protocols by analyzing observable network messages. To perform correct deduction of message semantics or behavior analysis, accurate message type identification is an essential first step. However, identifying message types is particularly difficult for binary protocols, whose structural features are hidden in their densely packed data representation. We leverage the intrinsic structural features of binary protocols and propose an accurate method for discriminating message types. Our approach uses a similarity measure with continuous value range by comparing feature vectors where vector elements correspond to the fields in a message, rather than discrete byte values. This enables a better recognition of structural patterns, which remain hidden when only exact value matches are considered. We combine Hirschberg alignment with DBSCAN as cluster algorithm to yield a novel inference mechanism. By applying novel autoconfiguration schemes, we do not require manually configured parameters for the analysis of an unknown protocol, as required by earlier approaches. Results of our evaluations show that our approach has considerable advantages in message type identification result quality and also execution performance over previous approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源