论文标题

迈向深度机器推理:一个基于原型的深神经网络,具有决策树推理

Towards Deep Machine Reasoning: a Prototype-based Deep Neural Network with Decision Tree Inference

论文作者

Angelov, Plamen, Soares, Eduardo

论文摘要

在本文中,我们介绍了DMR - 一种基于原型的方法和用于深度学习的网络体系结构,它使用基于决策树(DT)的推理和合成数据来平衡类。它建立在最近引入的XDNN方法的基础上,该方法解决了更复杂的多类问题,特别是当类高度不平衡时。 DMR从基于所有类别的直接决策转向了成对类比较的分层DT。此外,它迫使原型在类之间保持平衡,而不管训练数据的类别不平衡。它具有两种新颖的机制,即i)使用DT来确定获胜类标签,ii)通过合成根据可用训练数据确定的原型综合数据来平衡类。结果,我们显着提高了由此产生的完全解释的DNN的性能,这在良好的基准问题Caltech-101上超过了我们自己最近出版的“世界纪录”,这证明了最佳报告的结果Caltech-101。此外,我们还为另一个非常硬的基准问题(即Caltech-256)获得了另一个“世界纪录”,并且超过了Faces-1999问题的其他方法的结果。总而言之,我们提出了一种针对多个多级问题的不平衡问题特别有利的新方法,该方法在众所周知的硬基准问题上实现了两种世界记录,并且在准确性方面是另一个问题的最佳结果。此外,DMR提供了完整的解释性,不需要GPU,并且可以通过添加保留以前的原型但不需要完全重新培训来继续从新数据中学习。

In this paper we introduce the DMR -- a prototype-based method and network architecture for deep learning which is using a decision tree (DT)-based inference and synthetic data to balance the classes. It builds upon the recently introduced xDNN method addressing more complex multi-class problems, specifically when classes are highly imbalanced. DMR moves away from a direct decision based on all classes towards a layered DT of pair-wise class comparisons. In addition, it forces the prototypes to be balanced between classes regardless of possible class imbalances of the training data. It has two novel mechanisms, namely i) using a DT to determine the winning class label, and ii) balancing the classes by synthesizing data around the prototypes determined from the available training data. As a result, we improved significantly the performance of the resulting fully explainable DNN as evidenced by the best reported result on the well know benchmark problem Caltech-101 surpassing our own recently published "world record". Furthermore, we also achieved another "world record" for another very hard benchmark problem, namely Caltech-256 as well as surpassed the results of other approaches on Faces-1999 problem. In summary, we propose a new approach specifically advantageous for imbalanced multi-class problems that achieved two world records on well known hard benchmark problems and the best result on another problem in terms of accuracy. Moreover, DMR offers full explainability, does not require GPUs and can continue to learn from new data by adding new prototypes preserving the previous ones but not requiring full retraining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源