论文标题

对线性上下文匪徒的对抗性攻击

Adversarial Attacks on Linear Contextual Bandits

论文作者

Garcelon, Evrard, Roziere, Baptiste, Meunier, Laurent, Tarbouriech, Jean, Teytaud, Olivier, Lazaric, Alessandro, Pirotta, Matteo

论文摘要

从广告到推荐系统,从临床试验到教育,在各个领域中应用上下文匪徒算法。在许多这些领域中,恶意药物可能会激励攻击强盗算法以诱导其执行所需行为。例如,不道德的广告出版商可能会以牺牲广告客户为代价来增加自己的收入;卖方可能想增加其产品的曝光率,或者阻止竞争对手的广告活动。在本文中,我们研究了几种攻击场景,并表明恶意代理可以迫使线性上下文的强盗算法在$ t $ step的地平线上拉动任何所需的手臂$ t -o(t)$倍,同时将对抗性修改应用于奖励或仅在$ o($ o(log log t)$ $ o(\ log t)$上的奖励或上下文中。当恶意代理有兴趣影响单个上下文(例如,特定用户)中,恶意代理人有兴趣影响强盗算法的行为时,我们还会调查情况。我们首先为攻击的可行性提供了足够的条件,然后我们提出了一种有效的算法来执行攻击。我们验证了对合成数据集和现实世界数据集执行的实验的理论结果。

Contextual bandit algorithms are applied in a wide range of domains, from advertising to recommender systems, from clinical trials to education. In many of these domains, malicious agents may have incentives to attack the bandit algorithm to induce it to perform a desired behavior. For instance, an unscrupulous ad publisher may try to increase their own revenue at the expense of the advertisers; a seller may want to increase the exposure of their products, or thwart a competitor's advertising campaign. In this paper, we study several attack scenarios and show that a malicious agent can force a linear contextual bandit algorithm to pull any desired arm $T - o(T)$ times over a horizon of $T$ steps, while applying adversarial modifications to either rewards or contexts that only grow logarithmically as $O(\log T)$. We also investigate the case when a malicious agent is interested in affecting the behavior of the bandit algorithm in a single context (e.g., a specific user). We first provide sufficient conditions for the feasibility of the attack and we then propose an efficient algorithm to perform the attack. We validate our theoretical results on experiments performed on both synthetic and real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源