论文标题
额外维度对量子电动力学中的有效电荷和β功能的含义
Implications of extra dimensions on the effective charge and the beta function in quantum electrodynamics
论文作者
论文摘要
在量子电动力学(QED)的背景下,以1个额外的维度呈现了对光子自能,费米亚自能量和费米亚顶点函数的全面分析。在以无限数量的kaluza-klein字段为特征的5维理论中,单循环幅度涉及离散和连续总和,$ \ sum^\ infty_ {n = 1} \ int d^4K $,可能会偏离。使用尺寸正则化,我们表达诸如在复杂平面上定义的伽马和爱泼斯坦函数的产物之类的总和,这些函数的极限杆的差异为$ d \至4 $。使用爱泼斯坦函数的分析特性,我们表明,可以始终如一地重新归一化,这意味着相应的重新分配量减少了QED的相应重新分配量减少在非常大的压实量表$ r^{ - 1} $的极限上。研究了QED在一环级别的主要特征。我们使用质量依赖的$μ$ -Scheme来计算,用任意数字的额外尺寸$ n $ QED,beta函数满足所有理想的物理要求。我们认为,在这种类型的理论中,具有较大的质谱涵盖了广泛的能量范围,不应使用质量非依赖性的重新规范化方案来计算β函数。我们表明,对于任何能量$μ$,Beta功能都是有限的。特别是,它减少到通常的QED结果$ e^3/12π^2 $ for $ m \ llμ\ ll r^{ - 1} $,而对于$ m \ ggμ$而消失,$ m $,$ m $ the普通的fermion质量。在整个工作中,我们从爱泼斯坦功能的分析特性获得的所有结果的脱钩性质都得到了强调。
A comprehensive analysis on the photon self-energy, the fermion self-energy, and the fermion vertex function is presented at one loop in the context of quantum electrodynamics (QED) with 1 extra dimension. In 5-dimensional theories, characterized by an infinite number of Kaluza-Klein fields, one-loop amplitudes involve discrete as well as continuous sums, $\sum^\infty_{n=1}\int d^4k$, that could diverge. Using dimensional regularization, we express such sums as products of gamma and Epstein functions, both defined on the complex plane, with divergences arising from poles of these functions in the limit as $ D \to 4$. Using the analytical properties of the Epstein function, we show that the ultraviolet divergences generated by the Kaluza-Klein sums can be consistently renormalized, which means that the corresponding renormalized quantities reduce to the usual ones of QED at the limit of a very large compactification scale $R^{-1}$. The main features of QED at the one-loop level were studied. We use the mass-dependent $μ$-scheme to calculate, in QED with an arbitrary number $n$ of extra dimensions, a beta function fulfilling all desirable physical requirements. We argue that in this type of theories, with a large mass spectrum covering a wide energy range, beta functions should not be calculated by using mass-independent renormalization schemes. We show that the beta function is finite for any energy $μ$. In particular, it reduces to the usual QED result $e^3/12π^2$ for $m\ll μ\ll R^{-1}$ and vanishes for $m\gg μ$, with $m$ the usual fermion mass. Throughout the work, the decoupling nature of all our results obtained from the analytical properties of the Epstein function is stressed.