论文标题
中子恒星X射线二进制4U 1608-52的爆发衰减期间的强烈变化积聚形态
A strongly changing accretion morphology during the outburst decay of the neutron star X-ray binary 4U 1608-52
论文作者
论文摘要
通常认为,当X射线光度衰减低于$ \ sim 10^{ - 2} $时,瞬态低质量X射线二进制(LMXB)中吸积流的性质和几何形状会发生显着变化($ l _ {\ l _ {\ rm edd} $)。但是,在很少有观察情况下,在广泛的动态范围内,在单个X射线二进制中跟踪积聚流的演变。在这项工作中,我们使用Nustar和在中子星LMXB 4U 1608-52的2018年增生爆发期间获得的nustar和更好的观察结果,以研究反射光谱的变化。我们发现,X射线亮度为$ \ sim 10^{37} $ erg/s($ \ sim 0.05 $ $ $ $ $ $ l _ {\ rm edd} $)在爆发时消失了$ 5的nip $ n $ sim { erg/s($ \ sim 0.002 $ $ l _ {\ rm edd} $)。我们表明,这种反射特征的这种非检测无法通过下通量下的较低信噪比来解释,而是由积聚流的物理变化引起的。模拟内盘半径,磁盘离子化和反射部分的综合观察结果,我们发现反射特征的消失可以通过磁盘离子化增加($ \ log 2 \ geq 4 4.1 $)或大量减少反射率来解释。但是,仅磁盘截断的截断就无法解释缺乏后处理的FE-K $α$排放。如果内部积聚流从细磁盘蒸发到几何厚的流动,例如通常假定的辐射效率低效率的积聚流量以较低的质量吸积率,则可能会增加电离参数的增加。
It is commonly assumed that the properties and geometry of the accretion flow in transient low-mass X-ray binaries (LMXBs) significantly change when the X-ray luminosity decays below $\sim 10^{-2}$ of the Eddington limit ($L_{\rm Edd}$). However, there are few observational cases where the evolution of the accretion flow is tracked in a single X-ray binary over a wide dynamic range. In this work, we use NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608-52, to study changes in the reflection spectrum. We find that the broad Fe-K$α$ line and Compton hump, clearly seen during the peak of the outburst when the X-ray luminosity is $\sim 10^{37}$ erg/s ($\sim 0.05$ $L_{\rm Edd}$), disappear during the decay of the outburst when the source luminosity drops to $\sim 4.5 \times 10^{35}$ erg/s ($\sim 0.002$ $L_{\rm Edd}$). We show that this non-detection of the reflection features cannot be explained by the lower signal-to-noise at lower flux, but is instead caused by physical changes in the accretion flow. Simulating synthetic NuSTAR observations on a grid of inner disk radius, disk ionisation, and reflection fraction, we find that the disappearance of the reflection features can be explained by either increased disk ionisation ($\log ξ\geq 4.1$) or a much decreased reflection fraction. A changing disk truncation alone, however, cannot account for the lack of reprocessed Fe-K$α$ emission. The required increase in ionisation parameter could occur if the inner accretion flow evaporates from a thin disk into a geometrically thicker flow, such as the commonly assumed formation of an radiatively inefficient accretion flow at lower mass accretion rates.