论文标题

核质量模型的统计方面

Statistical aspects of nuclear mass models

论文作者

Kejzlar, Vojtech, Neufcourt, Léo, Nazarewicz, Witold, Reinhard, Paul-Gerhard

论文摘要

我们从核结合能的全球模型的角度研究了核质量的信息含量。为此,我们采用了许多统计方法和诊断工具,包括贝叶斯校准,贝叶斯模型平均,卡方相关分析,主成分分析和经验覆盖率概率。使用贝叶斯框架,我们通过考虑差异质量域进行校准来研究4参数液滴模型的结构。然后,我们使用卡方相关框架来分析使用均质和异质数据集校准的14参数Skyrme Skyrme能量密度。我们表明,在这两种情况下,都可以实现相当大的参数。证明了贝叶斯模型平均用于改善不确定性定量的优势。使用的统计方法是教学上描述的。在这种情况下,这项工作可以作为未来应用的指南。

We study the information content of nuclear masses from the perspective of global models of nuclear binding energies. To this end, we employ a number of statistical methods and diagnostic tools, including Bayesian calibration, Bayesian model averaging, chi-square correlation analysis, principal component analysis, and empirical coverage probability. Using a Bayesian framework, we investigate the structure of the 4-parameter Liquid Drop Model by considering discrepant mass domains for calibration. We then use the chi-square correlation framework to analyze the 14-parameter Skyrme energy density functional calibrated using homogeneous and heterogeneous datasets. We show that a quite dramatic parameter reduction can be achieved in both cases. The advantage of Bayesian model averaging for improving uncertainty quantification is demonstrated. The statistical approaches used are pedagogically described; in this context this work can serve as a guide for future applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源