论文标题

关于卷积不平等$ f \ geq f \ star f $

On the convolution inequality $f \geq f\star f$

论文作者

Carlen, Eric A., Jauslin, Ian, Lieb, Elliott H., Loss, Michael P.

论文摘要

我们考虑不平等$ f \ geqslant f \ star f $用于$ d $ d $ dimensional Euclidean Space上的真实集成功能,其中$ f \ star f $表示与自身的卷积。我们表明,所有这些功能$ f $都是非负的,对于任何$ 1 <p \ leqslant 2 $,在$ l^p $中的同一不平等情况并非如此,为此定义了卷积。我们还表明,所有集成解决方案$ f $ assimal $ \ int f(x){\ rm d} x \ leqslant \ tfrac12 $。此外,如果$ \ int f(x){\ rm d} x = \ tfrac12 $,则$ f $必须相当缓慢地衰减:$ \ int | x | f(x){\ rm d} x = \ infty $,这很敏锐,因为对于所有$ r <1 $,都有$ \ int f(x){\ rm d} {\ rm d} x = \ tfrac12 $和$ \ int | x | x | x | x |^r f(x){\ rm f(x){\ rm d} x <\ rm d} x <\ infty $。但是,如果$ \ int f(x){\ rm d} x =:a <\ tfrac12 $,无穷大的衰减可能要快得多:我们表明,对于所有$ a <\ tfrac12 $

We consider the inequality $f \geqslant f\star f$ for real integrable functions on $d$ dimensional Euclidean space where $f\star f$ denotes the convolution of $f$ with itself. We show that all such functions $f$ are non-negative, which is not the case for the same inequality in $L^p$ for any $1 < p \leqslant 2$, for which the convolution is defined. We also show that all integrable solutions $f$ satisfy $\int f(x){\rm d}x \leqslant \tfrac12$. Moreover, if $\int f(x){\rm d}x = \tfrac12$, then $f$ must decay fairly slowly: $\int |x| f(x){\rm d}x = \infty$, and this is sharp since for all $r< 1$, there are solutions with $\int f(x){\rm d}x = \tfrac12$ and $\int |x|^r f(x){\rm d}x <\infty$. However, if $\int f(x){\rm d}x = : a < \tfrac12$, the decay at infinity can be much more rapid: we show that for all $a<\tfrac12$, there are solutions such that for some $ε>0$, $\int e^{ε|x|}f(x){\rm d}x < \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源