论文标题

使用投影梯度方法对大型系统的最大化性最大化

Controllability maximization of large-scale systems using projected gradient method

论文作者

Sato, Kazuhiro, Takeda, Akiko

论文摘要

在这项工作中,我们为大型网络动力学系统(例如大脑网络)制定了两个可控性最大化问题:第一个问题是带有盒子约束的稀疏约束优化问题。第二个问题是第一个问题的修改问题,其中状态过渡矩阵是Metzler。换句话说,第二个问题是正面系统的实现问题。我们开发了一种预测的梯度方法来解决问题,并证明了具有局部线性收敛速率的固定点的全局收敛。明确给出了第一和第二个问题约束的投影。使用所提出的方法的数值实验提供了非平凡的结果。特别是,观察到可控性特征会随着参数指定稀疏性的增加而变化,并且变化率似乎取决于网络结构。

In this work, we formulate two controllability maximization problems for large-scale networked dynamical systems such as brain networks: The first problem is a sparsity constraint optimization problem with a box constraint. The second problem is a modified problem of the first problem, in which the state transition matrix is Metzler. In other words, the second problem is a realization problem for a positive system. We develop a projected gradient method for solving the problems, and prove global convergence to a stationary point with locally linear convergence rate. The projections onto the constraints of the first and second problems are given explicitly. Numerical experiments using the proposed method provide non-trivial results. In particular, the controllability characteristic is observed to change with increase in the parameter specifying sparsity, and the change rate appears to be dependent on the network structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源