论文标题
增量快速亚类判别分析
Incremental Fast Subclass Discriminant Analysis
论文作者
论文摘要
本文提出了一个增量解决方案,以实现快速级别判别分析(FASTSDA)。我们提出了一个精确和近似的线性解决方案,以及近似的内核变体。在八个具有不同增量批次尺寸的图像数据集上进行的广泛实验表明,在训练时间和准确性方面,提出的方法的优越性相等或接近FastSDA解决方案,并且优于其他方法。
This paper proposes an incremental solution to Fast Subclass Discriminant Analysis (fastSDA). We present an exact and an approximate linear solution, along with an approximate kernelized variant. Extensive experiments on eight image datasets with different incremental batch sizes show the superiority of the proposed approach in terms of training time and accuracy being equal or close to fastSDA solution and outperforming other methods.