论文标题
theta分隔线的多重性
Multiplicities of irreducible theta divisors
论文作者
论文摘要
令$(a,θ)$为一个复杂的主要两极化的阿贝利亚尺寸$ g \ geq 4 $。基于定理,分化技术和交集理论,我们表明,每当Theta Divisor $θ$不可理解时,其多样性在任何时候最多都是$ G-2 $。这改善了Kollár,Smith-Varley和Ein Lazarsfeld的工作。我们还介绍了一些新想法,以研究pluri-theta除数的相同类型的问题。
Let $(A,Θ)$ be a complex principally polarized abelian variety of dimension $g\geq 4$. Based on vanishing theorems, differentiation techniques and intersection theory, we show that whenever the theta divisor $Θ$ is irreducible, its multiplicity at any point is at most $g-2$. This improves work of Kollár, Smith-Varley, and Ein-Lazarsfeld. We also introduce some new ideas to study the same type of questions for pluri-theta divisors.