论文标题

熵稳定,高阶逐个局部离散,而无需接口处罚

Entropy-stable, high-order summation-by-parts discretizations without interface penalties

论文作者

Hicken, Jason E.

论文摘要

该论文介绍了由逐个组合(SBP)运算符构建的高阶精度,能量和熵稳定的离散化。值得注意的是,与以前使用不连续的SBP离散化的努力不同,离散化组装了全球SBP运营商并使用连续解决方案。研究基于衍生物的耗散和局部预测稳定(LPS)作为稳定基线离散化的选择。这些稳定在一个维度上等于乘法常数,但只有LPS仍适合一般的多维SBP操作员。此外,LPS能够利用$ 2P $对角色所需的其他节点,从而导致具有界光谱半径的元素 - 位置稳定。通过在熵变量上应用投影,可以轻松获得熵稳定的LPS版本。使用线性化和EULER方程的数值实验证明了稳定离散化的准确性,效率和鲁棒性,并且连续方法与更常见的不连续SBP方法进行了比较。

The paper presents high-order accurate, energy-, and entropy-stable discretizations constructed from summation-by-parts (SBP) operators. Notably, the discretizations assemble global SBP operators and use continuous solutions, unlike previous efforts that use discontinuous SBP discretizations. Derivative-based dissipation and local-projection stabilization (LPS) are investigated as options for stabilizing the baseline discretization. These stabilizations are equal up to a multiplicative constant in one dimension, but only LPS remains well conditioned for general, multidimensional SBP operators. Furthermore, LPS is able to take advantage of the additional nodes required by degree $2p$ diagonal-norms, resulting in an element-local stabilization with a bounded spectral radius. An entropy-stable version of LPS is easily obtained by applying the projection on the entropy variables. Numerical experiments with the linear-advection and Euler equations demonstrate the accuracy, efficiency, and robustness of the stabilized discretizations, and the continuous approach compares favorably with the more common discontinuous SBP methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源