论文标题

在某些合理连接的三倍上,编纂的两个积分点可能是密度的

Codimension two integral points on some rationally connected threefolds are potentially dense

论文作者

McKinnon, David, Roth, Mike

论文摘要

让$ v $成为一个平稳,投影,合理连接的品种,在数字字段$ k $上定义,让$ z \ subset v $至少是两个封闭的子集。在本文中,对于$ v $的某些选择,我们证明了$ z $ - 综合点的集合可能是zariski密集,从某种意义上说,有有限的扩展名$ k $ $ k $的$ k $,因此$ z $ ins $ z $ intement $ z $ - integral的$ p \ in s $ z $ - integral是zariski ins zariski ins zariski ins zariski ins $ v $。这为2001年的Hassett和Tschinkel的问题提供了积极的答案。

Let $V$ be a smooth, projective, rationally connected variety, defined over a number field $k$, and let $Z\subset V$ be a closed subset of codimension at least two. In this paper, for certain choices of $V$, we prove that the set of $Z$-integral points is potentially Zariski dense, in the sense that there is a finite extension $K$ of $k$ such that the set of points $P\in V(K)$ that are $Z$-integral is Zariski dense in $V$. This gives a positive answer to a question of Hassett and Tschinkel from 2001.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源