论文标题

多体理论中的张量网络的对称性减少I. $ su(2)$代数的自动符号评估

Symmetry reduction of tensor networks in many-body theory I. Automated symbolic evaluation of $SU(2)$ algebra

论文作者

Tichai, Alexander, Wirth, Roland, Ripoche, Julien, Duguet, Thomas

论文摘要

(核)多体理论的持续进展伴随着用于解决固定schrödinger方程的基本形式主义的复杂性的不断增长。可以在最先进的核能多体内方法中进行的相关工作方程式相对于角度摩托车,即$ su(2)$,每当有效地在对称性限制的环境中使用量子时,可以分析降低。相应的过程构成了一个繁琐且容易出错的过程,但是这些多体框架实现的组成部分。实际上,这种对称性降低是将现代模拟提高到更高精度的关键步骤,因为使用对称化的张量可以通过数量级来降低计算复杂性。 尽管过去曾尝试过在衍生工作方程式中自动化与费尔米金和玻色子代数相关的(反)换向规则,但没有系统的说明可以实现相同的对称性减少目标。在这项工作中,介绍了执行基于图理论的自动化工具的第一个版本。该代码以通用张量网络的对称无限制表达式作为输入,在几秒钟内以错误的安全方式提供了其Angular Momentum降低形式。几种最先进的多体方法是证明方法的普遍性并强调对多体社区的潜在影响的例子。

The ongoing progress in (nuclear) many-body theory is accompanied by an ever-rising increase in complexity of the underlying formalisms used to solve the stationary Schrödinger equation. The associated working equations at play in state-of-the-art ab initio nuclear many-body methods can be analytically reduced with respect to angular-momentum, i.e. $SU(2)$, quantum numbers whenever they are effectively employed in a symmetry-restricted context. The corresponding procedure constitutes a tedious and error-prone but yet an integral part of the implementation of those many-body frameworks. Indeed, this symmetry reduction is a key step to advance modern simulations to higher accuracy since the use of symmetry-adapted tensors can decrease the computational complexity by orders of magnitude. While attempts have been made in the past to automate the (anti-) commutation rules linked to Fermionic and Bosonic algebras at play in the derivation of the working equations, there is no systematic account to achieve the same goal for their symmetry reduction. In this work, the first version of an automated tool performing graph-theory-based angular-momentum reduction is presented. Taking the symmetry-unrestricted expressions of a generic tensor network as an input, the code provides their angular-momentum-reduced form in an error-safe way in a matter of seconds. Several state-of-the-art many-body methods serve as examples to demonstrate the generality of the approach and to highlight the potential impact on the many-body community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源