论文标题
椭圆形正弦和椭圆方程的可线度边界价值问题
Linearizable boundary value problems for the elliptic sine-Gordon and the elliptic Ernst equations
论文作者
论文摘要
通过采用称为统一变换或fokas方法的反向散射转换方法的新概括,可以表明,可以用适当的$ 2 $ 2 $ -MATRIX RIEMEMANN-HILEMANN-HILEMANN-HILEMANS-HILERENST(rabirix riememann-hillielert(rave)表示,可以用椭圆形的正弦格式方程以及椭圆形版本的某些物理上重要的边界价值问题解决方案来表示。这些RH问题是根据某些功能(称为光谱函数)定义的,该功能涉及给定的边界条件,但也未知边界值。对于任意边界条件,确定这些未知边界值需要分析非线性弗雷德姆积分方程。但是,存在特定的边界条件,称为可线化,为此,可以绕过此非线性步骤并直接根据给定的边界条件表征光谱函数。在这里,我们回顾了以下可线化边界值问题的实现:(a)椭圆形的正弦 - 戈登方程在无绑定的侧面零dirichlet边界值的半条纹中的椭圆形正弦格式方程,并且在边界侧具有恒定的dirichlet边界值; (b)具有边界条件的椭圆形方程,对应于均匀旋转的灰尘磁盘; (c)具有边界条件的椭圆形方程,对应于在中央黑洞周围均匀旋转的磁盘; (d)在旋转磁盘上具有消失的neumann边界值的椭圆形方程。
By employing a novel generalization of the inverse scattering transform method known as the unified transform or Fokas method, it can be shown that the solution of certain physically significant boundary value problems for the elliptic sine-Gordon equation, as well as for the elliptic version of the Ernst equation, can be expressed in terms of the solution of appropriate $2 \times 2$-matrix Riemann--Hilbert (RH) problems. These RH problems are defined in terms of certain functions, called spectral functions, which involve the given boundary conditions, but also unknown boundary values. For arbitrary boundary conditions, the determination of these unknown boundary values requires the analysis of a nonlinear Fredholm integral equation. However, there exist particular boundary conditions, called linearizable, for which it is possible to bypass this nonlinear step and to characterize the spectral functions directly in terms of the given boundary conditions. Here, we review the implementation of this effective procedure for the following linearizable boundary value problems: (a) the elliptic sine-Gordon equation in a semi-strip with zero Dirichlet boundary values on the unbounded sides and with constant Dirichlet boundary value on the bounded side; (b) the elliptic Ernst equation with boundary conditions corresponding to a uniformly rotating disk of dust; (c) the elliptic Ernst equation with boundary conditions corresponding to a disk rotating uniformly around a central black hole; (d) the elliptic Ernst equation with vanishing Neumann boundary values on a rotating disk.