论文标题

三维库仑玻璃模型的放松动力学

Relaxation dynamics of the three-dimensional Coulomb Glass model

论文作者

Bhandari, Preeti, Malik, Vikas, Kumar, Deepak, Schechter, Moshe

论文摘要

在本文中,我们通过使用平均场近似值分析了局部平衡状态附近的三个维度的库仑玻璃晶格模型的动力学。我们特别着重于了解定位长度($ξ$)和温度($ t $)在系统距离均衡不远的制度中的作用。我们使用动态矩阵的特征值分布来表征弛豫定律,这是低温下定位长度的函数。在数值和分析上讨论了动态矩阵的最小特征值随温度和定位长度的变化。我们的结果表明,本地化长度在放松定律中起着主导作用。对于很小的定位长度,我们发现长时间指数弛豫的交叉到中间时间的对数衰变。对于较大的定位长度,未观察到中间时间的对数衰减。

In this paper, we analyze the dynamics of the Coulomb Glass lattice model in three dimensions near a local equilibrium state by using mean-field approximations. We specifically focus on understanding the role of localization length ($ξ$) and the temperature ($T$) in the regime where the system is not far from equilibrium. We use the eigenvalue distribution of the dynamical matrix to characterize relaxation laws as a function of localization length at low temperatures. The variation of the minimum eigenvalue of the dynamical matrix with temperature and localization length is discussed numerically and analytically. Our results demonstrate the dominant role played by the localization length on the relaxation laws. For very small localization lengths we find a crossover from exponential relaxation at long times to a logarithmic decay at intermediate times. No logarithmic decay at the intermediate times is observed for large localization lengths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源