论文标题

分布式图实现

Distributed Graph Realizations

论文作者

Augustine, John, Choudhary, Keerti, Cohen, Avi, Peleg, David, Sivasubramaniam, Sumathi, Sourav, Suman

论文摘要

我们从分布式的角度研究图形实现问题,并在分布式计算的节点电容集团(NCC)模型中研究它,该模型最近引入了用于代表点对点网络的分布式计算。我们专注于两个中心变体,学位序列实现和最小阈值 - 连接性实现这两者都会导致叠加网络实现。覆盖网络实现可以是显式或隐式的。明确的实现需要实现图中任何边缘的两个端点,才能意识到边缘。另一方面,在隐式实现中,至少有实现图的每个边缘的一个端点需要意识到边缘。我们提出的主要实现算法如下。 1。$ \ tilde {o}(\ min \ {\ sqrt {m},δ\})$ time算法用于隐式实现度序列。在这里,$δ= \ max_v d(v)$是最高度,$ m =(1/2)\ sum_v d(v)$是最终实现中的边数。 $ \ tilde {o}(δ)$时间算法,用于明确实现度序列。我们首先计算一个隐式实现,然后将其转换为$ \ tilde {o}(δ)$附加回合中的显式。 2。$ \ tilde {o}(δ)$ time算法用于阈值连接问题,该问题获得了明确的解决方案和改进的$ \ tilde {o}(1)$算法,当所有节点都知道彼此的ID时,以实现隐式实现。这些算法是2个Approximations W.R.T.边数。 我们对上限进行补充,以表明上述算法紧密,直达$ \ log n $的因素。此外,我们为实现树木和$ \ tilde {o}(1)$ rough算法提供算法,以实现近似度序列。

We study graph realization problems from a distributed perspective and we study it in the node capacitated clique (NCC) model of distributed computing, recently introduced for representing peer-to-peer networks. We focus on two central variants, degree-sequence realization and minimum threshold-connectivity realization both of which result in overlay network realizations. Overlay network realizations can be either explicit or implicit. Explicit realizations require both endpoints of any edge in the realized graph to be aware of the edge. In implicit realizations, on the other hand, at least one endpoint of each edge of the realized graph needs to be aware of the edge. The main realization algorithms we present are the following. 1. An $\tilde{O}(\min\{\sqrt{m},Δ\})$ time algorithm for implicit realization of a degree sequence. Here, $Δ= \max_v d(v)$ is the maximum degree and $m = (1/2) \sum_v d(v)$ is the number of edges in the final realization. An $\tilde{O}(Δ)$ time algorithm for an explicit realization of a degree sequence. We first compute an implicit realization and then transform it into an explicit one in $\tilde{O}(Δ)$ additional rounds. 2. An $\tilde{O}(Δ)$ time algorithm for the threshold connectivity problem that obtains an explicit solution and an improved $\tilde{O}(1)$ algorithm for implicit realization when all nodes know each other's IDs. These algorithms are 2-approximations w.r.t. the number of edges. We complement our upper bounds with lower bounds to show that the above algorithms are tight up to factors of $\log n$. Additionally, we provide algorithms for realizing trees and an $\tilde{O}(1)$ round algorithm for approximate degree sequence realization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源