论文标题

通过学习的结构性高维分布的有效距离近似

Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning

论文作者

Bhattacharyya, Arnab, Gayen, Sutanu, Meel, Kuldeep S., Vinodchandran, N. V.

论文摘要

我们为几类结构化的高维分布设计有效的距离近似算法。具体来说,我们显示了以下问题的算法: - 示例访问两个贝叶斯网络$ p_1 $和$ p_2 $,超过已知的定向acyclic图$ g_1 $和$ g_2 $,具有$ n $ nodes且限制为数量,大约$ d_ {tv}(p_1,p_2,p_2,p_2,p_2)$,在附加错误$ $ $ $ $ $ε$内, - 给定样品访问两个铁磁iSing型号$ p_1 $和$ n $变量具有有界宽度的$ n $变量,大约$ d_ {tv}(p_1,p_1,p_1,p_2)$ to添加错误$ε$使用$ $ poly(n,ε)$ poly(n,ε) - 给定示例访问两个$ n $ -dimensional高斯$ p_1 $和$ p_2 $,大约$ d_ {tv}(p_1,p_1,p_1,p_2)$ to添加误差$ε$使用$ poly(n,ε)$样本和时间 - Given access to observations from two causal models $P$ and $Q$ on $n$ variables that are defined over known causal graphs, approximate $d_{tv}(P_a, Q_a)$ to within additive error $ε$ using $poly(n,ε)$ samples, where $P_a$ and $Q_a$ are the interventional distributions obtained by the intervention $do(A=a)$ on $P$和特定变量$ a $的$ q $。 我们的结果是这些经过良好研究的问题的第一个有效距离近似算法。它们是使用简单而通用的分布学习算法来得出的。距离近似算法意味着{\ em bolerant}测试上述结构性高维分布的接近度的新有效算法。

We design efficient distance approximation algorithms for several classes of structured high-dimensional distributions. Specifically, we show algorithms for the following problems: - Given sample access to two Bayesian networks $P_1$ and $P_2$ over known directed acyclic graphs $G_1$ and $G_2$ having $n$ nodes and bounded in-degree, approximate $d_{tv}(P_1,P_2)$ to within additive error $ε$ using $poly(n,ε)$ samples and time - Given sample access to two ferromagnetic Ising models $P_1$ and $P_2$ on $n$ variables with bounded width, approximate $d_{tv}(P_1, P_2)$ to within additive error $ε$ using $poly(n,ε)$ samples and time - Given sample access to two $n$-dimensional Gaussians $P_1$ and $P_2$, approximate $d_{tv}(P_1, P_2)$ to within additive error $ε$ using $poly(n,ε)$ samples and time - Given access to observations from two causal models $P$ and $Q$ on $n$ variables that are defined over known causal graphs, approximate $d_{tv}(P_a, Q_a)$ to within additive error $ε$ using $poly(n,ε)$ samples, where $P_a$ and $Q_a$ are the interventional distributions obtained by the intervention $do(A=a)$ on $P$ and $Q$ respectively for a particular variable $A$. Our results are the first efficient distance approximation algorithms for these well-studied problems. They are derived using a simple and general connection to distribution learning algorithms. The distance approximation algorithms imply new efficient algorithms for {\em tolerant} testing of closeness of the above-mentioned structured high-dimensional distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源