论文标题

驱动耗散链链中扰动的时空传播:一种OTOC方法

Spatio-temporal spread of perturbations in a driven dissipative Duffing chain: an OTOC approach

论文作者

Chatterjee, Amit Kumar, Kundu, Anupam, Kulkarni, Manas

论文摘要

超级订购的相关器(OTOC)已被广泛用作探索量子混乱的主要工具,最近也有一个经典的类似物。研究仅限于封闭系统。在这项工作中,我们使用经典的OTOC探索了一个开放的经典多体系统,更具体地说,是一种空间扩展的驱动旋转旋转振荡器的耗散链,以研究链中最初局部扰动的扩散和生长(衰减)。相应地,我们发现了三种不同类型的动力学行为,即持续的混乱,瞬态混乱和非骨质区域,如OTOC热图中不同的几何形状明显表现出来。为了量化此类差异,我们查看瞬时速度(IS),有限的时间Lyapunov指数(FTLE)和从OTOC提取的速度依赖性Lyapunov指数(VDLE)。这些数量的引入有助于诊断和划定动态行为的不同制度。为了控制开放的非线性系统,重要的是要查看这些量相对于参数的变化。当我们调整驱动,耗散和耦合时,与中间瞬态混乱政权以及高度间歇性持续的混乱点之间的持续混乱和非骨质政权之间的过渡。在零非线性的限制下,我们为驱动的耗散谐波系统提供了精确的分析结果,并且我们发现我们的分析结果可以很好地描述非差异状态以及达夫链短暂性方案中的晚期行为。我们认为,这种分析是迈向理解许多粒子开放系统中扰动的非线性动态,混乱和时空传播的重要一步。

Out-of-time-ordered correlators (OTOC) have been extensively used as a major tool for exploring quantum chaos and also recently, there has been a classical analogue. Studies have been limited to closed systems. In this work, we probe an open classical many-body system, more specifically, a spatially extended driven dissipative chain of coupled Duffing oscillators using the classical OTOC to investigate the spread and growth (decay) of an initially localized perturbation in the chain. Correspondingly, we find three distinct types of dynamical behavior, namely the sustained chaos, transient chaos and non-chaotic region, as clearly exhibited by different geometrical shapes in the heat map of OTOC. To quantify such differences, we look at instantaneous speed (IS), finite time Lyapunov exponents (FTLE) and velocity dependent Lyapunov exponents (VDLE) extracted from OTOC. Introduction of these quantities turn out to be instrumental in diagnosing and demarcating different regimes of dynamical behavior. To gain control over open nonlinear systems, it is important to look at the variation of these quantities with respect to parameters. As we tune drive, dissipation and coupling, FTLE and IS exhibit transition between sustained chaos and non-chaotic regimeswith intermediate transient chaos regimes and highly intermittent sustained chaos points. In the limit of zero nonlinearity, we present exact analytical results for the driven dissipative harmonic system and we find that our analytical results can very well describe the non-chaotic regime as well as the late time behavior in the transient regime of the Duffing chain. We believe, this analysis is an important step forward towards understanding nonlinear dynamics, chaos and spatio-temporal spread of perturbations in many-particle open systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源