论文标题
日本县的经济复杂性
Economic complexity of prefectures in Japan
论文作者
论文摘要
每个国家都优先考虑所有地区的包容性经济增长和发展。但是,我们观察到经济活动聚集在太空中,这导致不同地区之间人均收入的差异。 Hidalgo和Hausmann [PNAS 106,10570-10575(2009)提出了一种基于复杂性的方法,以解释各国人均收入的巨大差距。尽管使用国际出口数据对国家的经济复杂性进行了广泛的研究,但研究区域的经济复杂性研究的研究相对较少。在这里,我们根据超过一百万公司的基本信息来研究日本各行的工业部门复杂性。我们将数据汇总为双方群体和工业部门的两部分网络。我们将双方网络分解为县预选网络和行业网络,这揭示了它们之间的关系。使用度量标准测量各县和行业之间的相似性。从这些相似性矩阵中,我们使用最小的跨越树技术聚集了县和部门。来自双方网络结构的计算经济复杂性指数显示出与宏观经济指标的高度相关性,例如普拉皮塔(Per-Capita)毛毛的毛术和每人的预孕产物和预孕区收入。我们认为该指数反映了当前的经济绩效和县对未来增长的隐藏潜力。
Every nation prioritizes the inclusive economic growth and development of all regions. However, we observe that economic activities are clustered in space, which results in a disparity in per-capita income among different regions. A complexity-based method was proposed by Hidalgo and Hausmann [PNAS 106, 10570-10575 (2009)] to explain the large gaps in per-capita income across countries. Although there have been extensive studies on countries' economic complexity using international export data, studies on economic complexity at the regional level are relatively less studied. Here, we study the industrial sector complexity of prefectures in Japan based on the basic information of more than one million firms. We aggregate the data as a bipartite network of prefectures and industrial sectors. We decompose the bipartite network as a prefecture-prefecture network and sector-sector network, which reveals the relationships among them. Similarities among the prefectures and among the sectors are measured using a metric. From these similarity matrices, we cluster the prefectures and sectors using the minimal spanning tree technique.The computed economic complexity index from the structure of the bipartite network shows a high correlation with macroeconomic indicators, such as per-capita gross prefectural product and prefectural income per person. We argue that this index reflects the present economic performance and hidden potential of the prefectures for future growth.