论文标题

学习为隆重建模排名

Learning to rank for uplift modeling

论文作者

Devriendt, Floris, Guns, Tias, Verbeke, Wouter

论文摘要

提升建模已有效地用于营销和客户保留等领域,以针对那些由于活动或治疗而最有可能做出反应的客户。提升模型产生了隆重分数,然后将其用于基本上创建排名。相反,我们通过在隆升建模的背景下研究对学习级技术的潜力来进行研究直接排名。我们提出了当今使用中不同全球隆升建模措施的统一形式化,并探索如何将它们集成到学习对框架框架中。此外,我们引入了一种新的指标,用于学习到级别,重点是优化称为促进累积增益(PCG)的隆升曲线下的区域。我们采用学习范围的技术lambdamart根据PCG优化排名,并比标准学习对率指标的结果改善,与最先进的提升建模相比,结果等于结果。最后,我们展示了如何学习到级别的模型可以学习优化某个目标深度,但是,这些结果并未对测试集进行推广。

Uplift modeling has effectively been used in fields such as marketing and customer retention, to target those customers that are most likely to respond due to the campaign or treatment. Uplift models produce uplift scores which are then used to essentially create a ranking. We instead investigate to learn to rank directly by looking into the potential of learning-to-rank techniques in the context of uplift modeling. We propose a unified formalisation of different global uplift modeling measures in use today and explore how these can be integrated into the learning-to-rank framework. Additionally, we introduce a new metric for learning-to-rank that focusses on optimizing the area under the uplift curve called the promoted cumulative gain (PCG). We employ the learning-to-rank technique LambdaMART to optimize the ranking according to PCG and show improved results over standard learning-to-rank metrics and equal to improved results when compared with state-of-the-art uplift modeling. Finally, we show how learning-to-rank models can learn to optimize a certain targeting depth, however, these results do not generalize on the test set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源