论文标题

从差分系统到角色品种的单片图通常是沉浸式的

The monodromy map from differential systems to character variety is generically immersive

论文作者

Biswas, Indranil, Dumitrescu, Sorin

论文摘要

让$ g $是一个连接的还原仿射代数集团,其定义在$ \ mathbb c $和$ \ mathfrak g $它的lie代数上。我们研究了从紧凑的连接的Riemann Surface $ g \,\ geq \,2 $的$ \ Mathfrak g $ -Differential Systems的空间中的单片图。如果$ g $的复杂尺寸至少为三个,我们表明单片图是浸入通用点的一种。

Let $G$ be a connected reductive affine algebraic group defined over $\mathbb C$ and $\mathfrak g$ its Lie algebra. We study the monodromy map from the space of $\mathfrak g$-differential systems on a compact connected Riemann surface $Σ$ of genus $g \,\geq\, 2$ to the character variety of $G$-representations of the fundamental group of $Σ$. If the complex dimension of $G$ is at least three, we show that the monodromy map is an immersion at the generic point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源