论文标题
在满足Engel型身份的残留有限的群体上
On residually finite groups satisfying an Engel type identity
论文作者
论文摘要
令$ n,q $为正整数。我们表明,如果$ g $是满足身份$ [x,_ny^q] \ equiv 1的有限生成的剩余组,则存在一个函数$ f(n)$,因此$ g $在大多数$ f(n)$中具有nilpotent of Classex的nilpotent子组。我们还将此结果扩展到本地等级组。
Let $ n, q $ be positive integers. We show that if $ G $ is a finitely generated residually finite group satisfying the identity $ [x,_ny^q]\equiv 1, $ then there exists a function $ f(n) $ such that $ G $ has a nilpotent subgroup of finite index of class at most $ f(n) $. We also extend this result to locally graded groups.