论文标题
通过维度限制和杂核来调整半金色来控制磁磁性
Controlling magnetoresistance by tuning semimetallicity through dimensional confinement and heteroepitaxy
论文作者
论文摘要
通过体育结构工程控制电子特性是现代半导体设备的核心。在这里,我们将此概念扩展到半学概念,在该概念中,利用LUSB作为模型系统,我们表明量子限制可以提升载体补偿,并差异地影响电子和类似孔的载体的迁移率,从而在其大型,非饱和的磁磁性行为中进行了强烈的修改。半含量(LUSB)和半导体(GASB)的异质膜界面的粘合不匹配导致出现一种新颖的,二维的,界面孔气体,并伴随着跨界面的电荷传输,该界面提供了另一个可改变电子结构和Magnetotransport properties of Ultra-ulta-ulta-ulta-ultra-the Ulta-the Ultra-the Oltra-the Ultra-the ligities。我们的工作提出了一种使用密闭薄膜几何形状和杂质膜界面的一般策略,以在半金属系统中进行电子结构,从而可以控制其磁性行为并同时对其起源进行见解。
Controlling the electronic properties via bandstructure engineering is at the heart of modern semiconductor devices. Here, we extend this concept to semimetals where, utilizing LuSb as a model system, we show that quantum confinement lifts carrier compensation and differentially affects the mobility of the electron and hole-like carriers resulting in a strong modification in its large, non-saturating magnetoresistance behavior. Bonding mismatch at the heteroepitaxial interface of a semimetal (LuSb) and a semiconductor (GaSb) leads to the emergence of a novel, two-dimensional, interfacial hole gas and is accompanied by a charge transfer across the interface that provides another avenue to modify the electronic structure and magnetotransport properties in the ultra-thin limit. Our work lays out a general strategy of utilizing confined thin film geometries and heteroepitaxial interfaces to engineer electronic structure in semimetallic systems, which allows control over their magnetoresistance behavior and simultaneously, provides insights into its origin.