论文标题

Accentive Item2VEC:神经细心的用户表示

Attentive Item2Vec: Neural Attentive User Representations

论文作者

Barkan, Oren, Caciularu, Avi, Katz, Ori, Koenigstein, Noam

论文摘要

推荐系统的分解方法倾向于将用户表示为单个潜在向量。但是,用户行为和兴趣可能会在提交给用户的建议的上下文中发生变化。例如,在电影建议的情况下,通常情况确实是,早期的用户数据不如最新数据提供信息。但是,在流行续集电影的存在下,某个早期电影可能会突然变得更加相关。这只是一个可能在存在潜在的新建议的情况下动态改变用户兴趣的一个示例。在这项工作中,我们介绍了Accentive Item2Vec(AI2V) - 一种新颖的Item2Vec(I2V)的细心版本。 AI2V采用上下文目标注意机制,以了解并捕获有关潜在推荐项目(目标)的用户历史行为(上下文)的不同特征。细心的上下文目标机制可实现最终的神经专注用户表示。我们证明了AI2V在几个数据集上的有效性,在该数据集中证明它表现优于其他基线。

Factorization methods for recommender systems tend to represent users as a single latent vector. However, user behavior and interests may change in the context of the recommendations that are presented to the user. For example, in the case of movie recommendations, it is usually true that earlier user data is less informative than more recent data. However, it is possible that a certain early movie may become suddenly more relevant in the presence of a popular sequel movie. This is just a single example of a variety of possible dynamically altering user interests in the presence of a potential new recommendation. In this work, we present Attentive Item2vec (AI2V) - a novel attentive version of Item2vec (I2V). AI2V employs a context-target attention mechanism in order to learn and capture different characteristics of user historical behavior (context) with respect to a potential recommended item (target). The attentive context-target mechanism enables a final neural attentive user representation. We demonstrate the effectiveness of AI2V on several datasets, where it is shown to outperform other baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源