论文标题

使用多层感知器和鲸鱼优化算法的混合模型的风速预测

Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm

论文作者

Samadianfard, Saeed, Hashemi, Sajjad, Kargar, Katayoun, Izadyar, Mojtaba, Mostafaeipour, Ali, Mosavi, Amir, Nabipour, Narjes, Shamshirband, Shahaboddin

论文摘要

风能作为可再生能源,具有许多经济,环境和社会利益。为了增强和控制可再生风能,使用高精度预测风速的模型至关重要。由于忽视了需求和数据预处理的重要性,并且不忽视使用单个预测模型的不足之处,因此许多传统模型在风速预测中的性能较差。在当前的研究中,为了预测伊朗北部的目标站的风速,多层感知器模型(MLP)与鲸鱼优化算法(WOA)的组合使用,用于构建新方法(MLP-WOA)与有限的数据(2004-2014)。然后,在十个目标站中的每个站点中使用了MLP-WOA模型,九个站和第十个站进行了测试(即:Astara,Bandar-e-Anzali,Rasht,Manjil,Manjil,Jirandeh,Jirandeh,Talesh,Talesh,Kiyashahr,Kiyashahr,Kiyashahr,Lahijan,Lahijan,Musuleh和Deylaman),以提高该模型的模型。将混合模型在每个目标站的风速预测中的能力与没有WOA优化器的MLP模型进行了比较。为了确定确定的结果,利用了许多统计性能。对于所有十个目标站,MLP-WOA模型都比独立MLP模型具有精确的结果。混合模型具有可接受的性能,其RMSE,SI和RE参数较低,并且NSE,WI和KGE参数的较高值。得出的结论是,WOA优化算法可以提高MLP模型的预测准确性,并可能建议进行准确的风速预测。

Wind power as a renewable source of energy, has numerous economic, environmental and social benefits. In order to enhance and control renewable wind power, it is vital to utilize models that predict wind speed with high accuracy. Due to neglecting of requirement and significance of data preprocessing and disregarding the inadequacy of using a single predicting model, many traditional models have poor performance in wind speed prediction. In the current study, for predicting wind speed at target stations in the north of Iran, the combination of a multi-layer perceptron model (MLP) with the Whale Optimization Algorithm (WOA) used to build new method (MLP-WOA) with a limited set of data (2004-2014). Then, the MLP-WOA model was utilized at each of the ten target stations, with the nine stations for training and tenth station for testing (namely: Astara, Bandar-E-Anzali, Rasht, Manjil, Jirandeh, Talesh, Kiyashahr, Lahijan, Masuleh, and Deylaman) to increase the accuracy of the subsequent hybrid model. The capability of the hybrid model in wind speed forecasting at each target station was compared with the MLP model without the WOA optimizer. To determine definite results, numerous statistical performances were utilized. For all ten target stations, the MLP-WOA model had precise outcomes than the standalone MLP model. The hybrid model had acceptable performances with lower amounts of the RMSE, SI and RE parameters and higher values of NSE, WI, and KGE parameters. It was concluded that the WOA optimization algorithm can improve the prediction accuracy of MLP model and may be recommended for accurate wind speed prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源