论文标题
主动ICU转移的强大政策
Robust Policies For Proactive ICU Transfers
论文作者
论文摘要
与直接进入ICU的患者相比,转移到重症监护病房(ICU)的患者容易出现更高的死亡率。用于预测患者恶化的机器学习的最新进展引入了\ emph {主动转移}从病房到ICU的可能性。在这项工作中,我们研究了发现\ emph {robust}的患者转移政策的问题,这些政策在优化以改善整体患者护理时,由于数据限制而导致统计估计的不确定性。我们提出了一个马尔可夫决策过程模型,以捕获患者健康的演变,而状态代表了患者严重程度的量度。在相当普遍的假设下,我们表明,最佳转移政策具有阈值结构,即,它将所有患者的一定严重程度高于ICU的患者转移到ICU(可用容量)。由于通常根据现实世界数据的统计估计来确定模型参数,因此它们固有地遵守错误指定和估计错误。我们通过得出强大的策略来考虑此参数不确定性,该策略优化了模型参数的所有合理值中最差的奖励。我们表明,在相当普遍的假设下,强大的策略也具有阈值结构。此外,它在转移患者方面比最佳名义政策更具侵略性,而名义策略没有考虑到参数不确定性。我们使用21个KNPC医院的住院数据集提出了计算实验,并提供了各种医院指标(死亡率,停机时间,平均ICU入住)对参数的小变化的敏感性的经验证据。我们的工作为参数不确定性对积极的ICU转移的简单策略的影响提供了有用的见解,这些策略具有强大的经验绩效和理论保证。
Patients whose transfer to the Intensive Care Unit (ICU) is unplanned are prone to higher mortality rates than those who were admitted directly to the ICU. Recent advances in machine learning to predict patient deterioration have introduced the possibility of \emph{proactive transfer} from the ward to the ICU. In this work, we study the problem of finding \emph{robust} patient transfer policies which account for uncertainty in statistical estimates due to data limitations when optimizing to improve overall patient care. We propose a Markov Decision Process model to capture the evolution of patient health, where the states represent a measure of patient severity. Under fairly general assumptions, we show that an optimal transfer policy has a threshold structure, i.e., that it transfers all patients above a certain severity level to the ICU (subject to available capacity). As model parameters are typically determined based on statistical estimations from real-world data, they are inherently subject to misspecification and estimation errors. We account for this parameter uncertainty by deriving a robust policy that optimizes the worst-case reward across all plausible values of the model parameters. We show that the robust policy also has a threshold structure under fairly general assumptions. Moreover, it is more aggressive in transferring patients than the optimal nominal policy, which does not take into account parameter uncertainty. We present computational experiments using a dataset of hospitalizations at 21 KNPC hospitals, and present empirical evidence of the sensitivity of various hospital metrics (mortality, length-of-stay, average ICU occupancy) to small changes in the parameters. Our work provides useful insights into the impact of parameter uncertainty on deriving simple policies for proactive ICU transfer that have strong empirical performance and theoretical guarantees.