论文标题

尺寸可变无地图导航,并深入强化学习

Dimension-variable Mapless Navigation with Deep Reinforcement Learning

论文作者

Zhang, Wei, Zhang, Yunfeng, Liu, Ning, Ren, Kai

论文摘要

深度强化学习(DRL)在培训控制剂的无地图机器人导航方面表现出了巨大的希望。但是,经过DRL训练的代理仅限于训练过程中使用的特定机器人尺寸,在机器人的维度因特定于任务需求而变化时会阻碍其适用性。为了克服这一限制,我们提出了基于DRL的尺寸变量机器人导航方法。我们的方法涉及在模拟中训练元代理,然后使用称为Dimension-able-Varable技能传递(DVST)的技术将元技能转移到维尺寸的机器人中。在训练阶段,元机器人的元代理商通过DRL学习了自动化技能。在技​​能转移阶段中,将尺寸变化的机器人的观测值缩放并传输到元代理,并将结果控制策略缩放到维尺寸变化的机器人。通过广泛的模拟和现实世界实验,我们证明了维尺寸变化的机器人可以在未知和动态环境中成功导航而无需任何重新训练。结果表明,我们的工作大大扩展了基于DRL的导航方法的适用性,从而可以在具有不同尺寸的机器人上使用,而无需限制固定尺寸。我们的实验视频可以在补充文件中找到。

Deep reinforcement learning (DRL) has exhibited considerable promise in the training of control agents for mapless robot navigation. However, DRL-trained agents are limited to the specific robot dimensions used during training, hindering their applicability when the robot's dimension changes for task-specific requirements. To overcome this limitation, we propose a dimension-variable robot navigation method based on DRL. Our approach involves training a meta agent in simulation and subsequently transferring the meta skill to a dimension-varied robot using a technique called dimension-variable skill transfer (DVST). During the training phase, the meta agent for the meta robot learns self-navigation skills with DRL. In the skill-transfer phase, observations from the dimension-varied robot are scaled and transferred to the meta agent, and the resulting control policy is scaled back to the dimension-varied robot. Through extensive simulated and real-world experiments, we demonstrated that the dimension-varied robots could successfully navigate in unknown and dynamic environments without any retraining. The results show that our work substantially expands the applicability of DRL-based navigation methods, enabling them to be used on robots with different dimensions without the limitation of a fixed dimension. The video of our experiments can be found in the supplementary file.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源